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Construction of exact solutions by spatial translations
in inhomogeneous nonlinear Schro¨dinger equations
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~Received 23 June 2001; published 9 October 2001!

In this paper, we study a general nonlinear Schro¨dinger equation with a time-dependent harmonic potential.
Despite the lack of translational invariance, we find a symmetry trasformation that, up from any solution,
produces infinitely many others that are centered on classical trajectories. The results presented here imply that,
not only the center of mass of the wave packet satisfies the Ehrenfest theorem and is decoupled from the
dynamics of the wave packet, but also the shape of the solution is independent of the behavior of the center of
the wave. Our findings have implications on the dynamics of Bose-Einstein condensates in magnetic traps.
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I. INTRODUCTION

One of the most fruitful concepts of physics is that
symmetries. From high-energy physics to condensed ma
symmetries play a central role on our understanding of
world.

As what concerns classical field theories, a symmetry
transformation which preserves the form of the equations
this case, the symmetry may help us in many different wa
First of all, we may build solutions that have the same sy
metry as the equation. Let us take the two-dimensional s
tially homogeneous nonlinear Schro¨dinger ~NLS! equation

i ] tc~r ,t !5F2
1

2
D1ucu2Gc~r ,t !. ~1!

This equation is invariant under spatial rotations, and the
fore, we are able to search solutions with the given symm
try, c5c(Ax21y2)(x1 iy)n.

Second and most important, Noether’s theorem ensure
that once we have found a certain symmetry in our mode
is possible to construct certain quantities, often with phys
relevance, which will be conserved during the evolution. F
instance, the invariance of Eq.~1! under time translations
spatial translations, and rotations, give us seven conse
quantities, which are the energy

E@c#5E u“cu21
1

4
ucu4, ~2!

the linear moment of the center of mass

Pc5
d

dt
^r &5^2 i“&[E 2 i c̄“c, ~3!

and the angular momentum of the wave packet

L5^2 i r3“&. ~4!
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Finally, the existence of symmetries and their associa
conservation laws helps us in the study of other properties
particular, the invariance of Eq.~1! under Galilean transfor-
mations allows us to rewrite our equations on an iner
frame of reference where the center of mass is still. T
means that the dynamics of the center of mass does not a
at all the dynamics of other properties of the wave packe

In this paper, we study a generalization of Eq.~1! that
lacks translational invariance. Nevertheless, we will show
Galilean-like symmetry, that allows us to construct, from a
solution, a continuum of other ones that follow differe
classical trajectories. We will show that this symmetry im
plies a decoupling of the dynamics of the center of mass w
respect to all other properties of the wave packet. We w
also point out some very relevant applications of our findin
to the dynamics of Bose-Einstein condensates and of sev
optical systems.

II. THE MODEL

In this paper, we will consider the following family o
nonlinear Schro¨dinger ~NLS! equations with a general non
linear termG(ucu)

i ] tc~r ,t !5F2
1

2
D1V~r ,t !1G~ ucu!Gc~r ,t !. ~5!

We will restrict our interest to the case of a quadratic pot
tial V(r ,t), i.e.,

V~r ,t !5
1

2
†r ,A~ t !r ‡, Ai j 5v i~ t !d i j . ~6!

Equation~5! with potential ~6! is an accurate model o
many physical phenomena. In particular, it describes the
namics of a Bose-Einstein condensate in the mean-field
proximation@1#, the propagation of optical beams in grad
index fibers@2#, and the propagation of solitary waves
fiber trasmission lines with in-line phase modulators@3#.

The nonlinear termG may adopt many different forms
depending on the particular application of Eq.~6!. The most
classical cases are the so-called power nonlinear

,
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G(ucu2)56ucup that arise in mean-field models with diffe
ent spatial dimensionalities. In nonlinear optics, we also fi
many versions of the so-called saturable nonlinearities, e
G(ucu2)56ucu2/(11bucu2) as well as their Taylor aproxi
mations for smallu, G(ucu2)56ucu22aucu4. But the non-
linearity need not be local, and in applications to Bos
Einstein condensation, one finds nonlocal expansions of
atom-atom interaction G(ucu2)5*K(r2r 8)uc(r 8)u2dr 8,
where the kernel is either radially symmetricK(ur2r 8u)
@1,4# or adopts more complex dependencies in the cas
dipole-dipole interactions@5#. These are only a few example
of the many forms the nonlinear term may have.

The description of the dynamics involved in a NLS equ
tion is of great interest for applications. However, except
the very specific one-dimensional case withG56ucu2,A
50, in which the equation may be integrated by means
the inverse scattering method, nothing can be said abou
structure of the solutions. There are other tools, such as
moment method, which give us information about the evo
tion of relevant integral quantities characterizing the solut
@2#. In some cases, these methods are connected to the
formal invariance of some classes of nonlinear Schro¨dinger
equations@6#, but have several limitations:~i! They cannot
be used to build explicit solutions of the equations and~ii !
they work exactly only on specific cases. To derive a pro
dure that is valid for more general nonlinear problems, as
ones we consider here, one must use some nontrivial
proximations@7#.

In this paper, we will be able to exploit the behavior
Eq. ~5! with harmonic potential~6! under spatial traslation
to provide explicit information on a whole class of tim
dependent problems as will be shown below.

III. BUILDING SOLUTIONS OF THE NLS
BY SPATIAL TRANSLATIONS

A. General case

Let us consider a solutionc(r ,t) of Eqs.~5! and ~6! sat-
isfying c(r ,t50)5j(r ). Our main result is that givenany
solution c(r ,t), there exists a continuum of other solutio
that are of the form

cR~r ,t !5c„r2R~ t !,t…eiu(r ,t), ~7!

being R(t) and u(r ,t) appropriate functions to be dete
mined later.

To check this point, we proceed by inserting the ans
cR(r ,t) given by Eq.~7! into Eq. ~5!. Using the fact that
c(r ,t) is a solution of Eq.~5!, we are able to cancel sever
terms on both sides of the equation. If we impose that
function cR be also a solution of Eq.~5!, we reach a solv-
ability condition that is made up of all the remaining term

i S“u2
dR

dt
,“c D5

1

2
@] tu2 iDu1~“u!2

1„2r2R,A~ t !R…#c. ~8!
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This is a set of partial differential equation for the u
known function u(r ,t). Fortunately, it is possible to con
struct solutions by choosing a linear phase,

u~r ,t !5S r ,
dR

dt D1 f ~ t !, ~9!

together with a trajectoryR(t) determined by equations o
Newton type

d2R

dt2
1A~ t !R50. ~10!

By applying the hydrodynamic interpretation of the NL
equation@9#, the precise form of Eq.~9! leads to a diver-
genceless velocity field,v5“u5R, which is responsible for
the global displacement of the solution.

Finally, we need a global contribution to the phasef (t),
which is determined uniquely from

d f

dt
5S dR

dt
,
dR

dt D2„R,A~ t !R…. ~11!

This contribution can be calculated for each trajectory,

f ~ t !5E
0

tF S dR

dt
,
dR

dt D2„R,A~ t !R…Gdt. ~12!

Therefore, what we get from Eqs.~7!, ~9!, ~10!, and~12!
is a solution of Eq.~5! that is displaced from the initial one
It is remarkable that these explicit time-dependent soluti
are obtained by spatial translations in a system that is
spatially homogeneous and the dynamics is defined
simple, linear ordinary differential equations. This behav
is exclusive of the harmonic-oscillatortype potential given
Eq. ~6! but it is not restricted to any specific form of th
nonlinear term or any dimensionality of the system.

B. Evolution of stationary states

A relevant type of solutions of Eq.~5! are the so-called
solitary waves or stationary solutions, which are of the fo

c~r ,t !5fm~r !eimt. ~13!

The existence and number of these solutions depends on
properties of the nonlinear term. In this paper, we will a
sume that the nonlinear term is such that these solut
exist, which is in fact the case for most choices ofG of
physical interest@4,8#. Then we may build from Eq.~13!
solutions of the type

f (R,m)~r ,t !5fm„r2R~ t !…ei [mt1u(r ,t)] . ~14!

In this case, the whole of the wave packet moves followin
classical orbit,while preserving the shape. This interesting
prediction may be confirmed both experimentally and n
merically.

In Fig. 1, we show the evolution of two of such wav
packets, first in the symmetric trap~solid line! and in the
2-2
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asymmetric trap~dashed line!. Such solutions were obtaine
by solving Eq.~5! using a split-step method on a Fouri
basis with 1283128 modes. As our analysis predicts, t
shape of the wave function is preserved up to the numer
precision of the computer.

C. Addition of rotational terms

The proof presented in Sec. III A is also valid when t
matrix A(t) is nondiagonal. A specific case of physical i
terest arises in Bose-Einstein condensation when the trap
confines the atoms rotates. In that case, it is customar
study the system on the frame of reference that moves
the trap, at angular speedV(t). On these coordinates, th
NLS equation reads

i ] tc5F2
1

2
D1V~r !1G~ ucu!1VLzGc, ~15!

whereLz is the Hermitian operator that represents the p
jection of the angular momentum along the rotation axis a
is given by

Lzc52 i ~r ,J“c!. ~16!

The antisymmetric matrixJ is the generator of the rotation
around thez axis

J5S 0 1 0

21 0 0

0 0 0
D . ~17!

FIG. 1. Trajectories of a solution that is initially stationary, a
is suddenly displaced and imparted an initial velocity. We plot
closed trajectories of the center of mass in the symmetric confi

ment@solid line,vx5vy51, R(0)5(1,0), Ṙ(0)5(0,1)# and in the
asymmetric trap@dashed line,vy51.2, vx51, R(0)5(1,0),

Ṙ(0)5(0,1)#. The trajectories have been obtained integrating
~5! numerically.
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By repeating the same calculations, one arrives to a c
sical equation for the wave-packet centerR(t), with an ad-
ditional term due to the centrifugal force

d2R

dt2
1VJ

dR

dt
1AR50. ~18!

These equations form a linear system whose solutions
easy to obtain. Specifically, for a two-dimensional oscilla
and constant frequenciesvx , vy , andV, the solutions are
quasiperiodic with characteristic frequencies given by

v1
25uA~vx

21vy
2!21V2@V212~vx

21vy
2!#1vy

22V22vx
2u,

~19!

v2
25uV21vx

22vy
21A~vx

21vy
2!21V2@V212~vx

21vy
2!#u.
~20!

Typical solutions are plotted in Fig. 2, where the traje
tory of the wave packet has been integrated numerically
from Eq. ~18!. It is important to stress the stability of thes
solutions: even in the case of overcritical rotation (V

e
e-

.

FIG. 2. Trajectories of the center of a solution placed initially

x(0)51,y(0)51, with Ṙ(0)50 in two different situations:~a!
vx5vy51, V51/2, ~b! vx51,vy53/2,V53/2.
2-3
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.vx,y), when the centrifugal force exceeds the restor
force of the harmonic potential, the motion is made
bounded oscillations.

Incidentally, there is a formal equivalence between a N
equation with a rotating trap~15! with vx5vy5V and a
Ginzburg-Landau equation

i ] tc5
1

2
~2 i“1A!2c1ucu2c, ~21!

with uniform magnetic field,At5V(y,2x,0). In this model,
it is particularly intuitive that the wave packet should rota
around the origin, due to the action of the uniform magne
field, just as the above-discussed symmetry~16! reveals.

IV. DECOUPLING THE DYNAMICS
OF THE CENTER OF MASS

Up to now, we have shown that given a solutionc(r ,t),
we can build many others,cR(r ,t), by spatial translations o
the initial data. The process may be reversed, so that giv
wave packetf[cR(r ,t), which is a solution of Eq.~5!, we
can extract the dynamics of the center of massR(t) and the
internal dynamics of the wave packetc(r ,t).

The practical process is as follows. Letf(r ,t) be any
solution of the NLS equation with a harmonic potential~5!.
The center-of-mass position is defined as

Rc~ t !5^r &[E r uf~r ,t !u2dnr . ~22!

The dynamics of the center of mass, and of its associa
momentum~3!, is given by Ehrenfest’s equations. Using t
notation from quantum mechanics, the expected value o
operatorA evolves according to

d

dt
A5^ i @H~c!,A#&, ~23!

whereH(c) is a nonlinear operator given by

H52
1

2
n1V~r ,t !1G~ ucu!. ~24!

Applying Eq. ~23! to r and to (2 i“), we obtain the follow-
ing coupled-ordinary differential equations

d

dt
Rc5^2 i“&5Pc , ~25!

d

dt
Pc5^2“V&52ARc . ~26!

With some manipulations, it is easy to rewrite this system
a second-order differential equation

d2Rc

dt2
1ARc50, ~27!

with initial conditions
05660
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Rc~0!5E r uj~r !u2dnr , ~28!

dRc

dt U
t50

52 i E j̄“j dnr , ~29!

wherej(r )5f(r ,0) is the initial data of Eq.~5!.
This means that the center of mass already satisfies

equations for a valid displacement in our symmetry transf
mation ~7!. Hence we can define a second wave funct
c(r ,t), which moves with the center of mass, and that is
solution of Eq.~5! with initial data

c~r ,0!5j~r1Rc!expS 2 i r ,
dRc

dt D . ~30!

This second wave functionc(r ,t) is located on the center o
mass

E r uc~r ,t !u2 dnr 50, ~31!

and it is the one that carries the dynamics of
observables—widths, angular momentum, circulation, et
completely free from the influence of the center of mass.

Summing up, what all these transformations tell us is t
if we displace the initial data, or impart some speed to
center, we obtain the same solution, c(r ,t), centered on dif-
ferent trajectories.

This result has been obtained with the help of the Erh
fest theorem, which states that the center of mass sh
satisfy an equation of Newton type, and that was alrea
known @10#. However, the result summarized in Eq.~30! is
much stronger since it states thatthe wave packet is no
affected by the dynamics of its centrum, as this dynamics can
be integrated out of the equations.

V. APPLICATION TO THE DYNAMICS OF THE CENTER
OF MASS IN BOSE-EINSTEIN CONDENSATES

Ever since the first works with dilute Bose-Einstein co
densates, there has been an amazingly precise agreeme
tween theory and experiments. From the studies of nor
modes, to the nucleation of vortices, it is usual to obtain
good quantitative matching between the predictions~let it be
collective frequencies or critical speeds! and the actual mea
surements.

This is most intriguing in the case of experiments th
involve a mechanical perturbation of the condensate. We
focus on the study of the collective excitations of a cond
sate. Such experiments consist of a periodic modulation
the confinement of the condensate, and the subsequent s
of the oscillations of the wave packet’s widths. These m
nipulations have been shown to not only modulate
widths, but to induce an exact, and extremely strong re
nance of the center of mass@10,11#. Nevertheless, both in the
experimental results and in some rough models, the wid
and the center of mass seem to be decoupled, thus allow
us to precisely characterize the normal modes of the cond
2-4
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CONSTRUCTION OF EXACT SOLUTIONS BY SPATIAL . . . PHYSICAL REVIEW E 64 056602
sate. That observed behavior is easy to understand in
framework of the dynamics of displaced solutions describ
here.

Another important application of Eq.~10! is the study of
the center of mass of the condensate in the regime of o
critical rotation,V.min$vx ,vy%. In this regime, the rotating
condensate that is ruled by Eq.~15!, suffers a centrifugal
force that is stronger than the restoring force due to the
monic potential. It is clear that in this regime the condens
should be, and in fact it is found to be@12#, untrapped.

However, the analysis of the eigenvalues of Eqs.~18!,
which are given by Eq.~19! proves that the equilibrium poin
at x5y50 is a center, and thus, dynamically stable. The
fore, the only source of instability for the condensate un
overcritical rotations can be due to deformations of
cloud.

This result is a bit more general than the one in@13#,
where it is proposed the existence of some configurations
the condensate, which correspond to centered and elliptic
deformed clouds that survive to the action of the centrifu
motion. These configurations are stable under dipolar per
bations~displacements of the cloud! and under quadrupola
excitations~certain type of deformations!. It remains an open
problem to show whether such states exist that are dyna
cally stable underany deformation.

As a side result that may be verified in experiments
perturbed condensate in a rotating trap suffers bounded
cillations around the origin with two different frequencie
v1 andv2. These frequencies bear a nontrivial depende
with respect to the angular speed of the trap~19!, which can
be used to better calibrate experiments. Finally, we m
remark that the existence of two different oscillation freque
cies for the center of massv1 andv2 even in the symmetric
trap (vx5vy) represents a splitting of the dipolar mod
which is intuitively similar to the splitting of the quadrupola
mode due to the presence of a vortex.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have built solutions by simple tim
dependent translations in a system without translational s
metry. It is remarkable, and probably a special feature of
harmonic potential that this procedure works. Specially st
ing is the case of translation of stationary solutions wh
center moves harmonically without any distortion on t
shape of the solution itself~only a simple phase appears!.
v.
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In relation with the previous finding, we have shown th
the dynamics of the center of mass is decoupled from
dynamics of all other properties of the wave packet. T
result stands on other works@10,11#. However, the contribu-
tion of this paper is different and stronger, since we sh
that motion of the center of mass may never influence
other properties of the wave packet, let it be a Bose-Einstein
condensate or, in a similar row, a solitary wave made
light. For all these systems, the evolution will be essentia
the same, no matter the initial position and initial velocity
the atomic cloud or solitary wave.

Our calculations are valid for any type of nonlinearity th
is symmetric under translations, and which depends only
the density ucu. This includes the cubic nonlinearity fo
Bose-Einstein condensatesG5ucu2 and most reasonabl
nonlocal terms@4#. This, and the fact that our calculations d
not depend on the dimensionality of the system, extends
validity of this paper to condensates with dipolar intera
tions, charged condensates, light in Kerr media, and ligh
saturable media.

The decoupling of the motion of the center of mass h
also practical consequences. The invariance of the wa
packet dynamics up to displacements and impulses on
initial data, explains why it is actually possible to measu
the frequencies of the normal modes of a condensate, e
when the center of mass of the condensate is known to
exponentially influenced by the changes on the trapping
tential @10,11#. This invariance also benefits experimen
with rotating condensates, as we have shown above, a
simple analysis reveals an unexpected splitting of the dip
mode of a condensate.

The situation is different when other type of potentials a
considered such as stationary pinning potentials or any n
harmonic trapping potential, such as some polynomial c
didatesV(x)}x4 that are being considered in the context
all-optical condensation in very elongated traps. The pr
ence of such potentials breaks our calculations, as the
namics of the center of mass couples to that of the widths
means of these external agents. We wonder if this will im
some puzzling dynamics in future experiments.
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